You are here

U of G Study Identifies Cells Driving Gecko’s Ability to Regrow Its Tail

A U of G researcher is the first to discover the type of stem cell that is behind the gecko’s ability to regrow its tail, a finding that has implications for spinal cord treatment in humans.

This new research was recently featured in Popular Science and MSN.

Many lizards can detach a portion of their tail to avoid a predator and then regenerate a new one. Unlike in mammals, the lizard tail includes part of the spinal cord.

Ontario Veterinary College professor Matt VickaryousProf. Matthew Vickaryous, in the Ontario Veterinary College's Department of Biomedical Sciences, found that the spinal cord in the tail contained a large number of stem cells and proteins known to support stem cell growth.

“We knew the gecko’s spinal cord could regenerate, but we didn’t know which cells were playing a key role,” said Vickaryous, lead author of the study recently published in the Journal of Comparative Neurology. “Humans are notoriously bad at dealing with spinal cord injuries, so I’m hoping we can use what we learn from geckos to coax human spinal cord injuries into repairing themselves.”

Geckos are able to regrow a new tail within 30 days – faster than any other type of lizard.

In the wild, they detach their tails when grabbed by a predator. The severed tail continues to wiggle, distracting the predator long enough for the reptile to escape.

In the lab, Vickaryous simulates this by pinching the gecko’s tail, causing the tail to drop. Once detached, the site of the tail loss begins to repair itself, eventually leading to new tissue formation and a new spinal cord. For this study, the biomedical sciences professor, along with PhD student Emily Gilbert, investigated what happens at the cellular level before and after detachment.

Read the entire article on the University of Guelph website